Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFβ Receptor 2

Identifieur interne : 000812 ( Main/Exploration ); précédent : 000811; suivant : 000813

Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFβ Receptor 2

Auteurs : Yunru Chen ; Qing Li ; Kangsheng Tu ; Yuanguo Wang ; Xianghu Wang ; Dandan Liu ; Chen Chen ; Donglian Liu ; Rendong Yang ; Wei Qiu ; Ningling Kang

Source :

RBID : PMC:6996408

Abstract

Transforming growth factor β (TGFβ) induces hepatic stellate cell (HSC) differentiation into tumor‐promoting myofibroblast, although underlying mechanism remains incompletely understood. Focal adhesion kinase (FAK) is activated in response to TGFβ stimulation, so it transmits TGFβ stimulus to extracellular signal‐regulated kinase and P38 mitogen‐activated protein kinase signaling. However, it is unknown whether FAK can, in return, modulate TGFβ receptors. In this study, we tested whether FAK phosphorylated TGFβ receptor 2 (TGFβR2) and regulated TGFβR2 intracellular trafficking in HSCs. The FAKY397F mutant and PF‐573,228 were used to inhibit the kinase activity of FAK, the TGFβR2 protein level was quantitated by immunoblotting, and HSC differentiation into myofibroblast was assessed by expression of HSC activation markers, alpha‐smooth muscle actin, fibronectin, or connective tissue growth factor. We found that targeting FAK kinase activity suppressed the TGFβR2 protein level, TGFβ1‐induced mothers against decapentaplegic homolog phosphorylation, and myofibroblastic activation of HSCs. At the molecular and cellular level, active FAK (phosphorylated FAK at tyrosine 397) bound to TGFβR2 and kept TGFβR2 at the peripheral plasma membrane of HSCs, and it induced TGFβR2 phosphorylation at tyrosine 336. In contrast, targeting FAK or mutating Y336 to F on TGFβR2 led to lysosomal sorting and degradation of TGFβR2. Using RNA sequencing, we identified that the transcripts of 764 TGFβ target genes were influenced by FAK inhibition, and that through FAK, TGFβ1 stimulated HSCs to produce a panel of tumor‐promoting factors, including extracellular matrix remodeling proteins, growth factors and cytokines, and immune checkpoint molecule PD‐L1. Functionally, targeting FAK inhibited tumor‐promoting effects of HSCs in vitro and in a tumor implantation mouse model. Conclusion: FAK targets TGFβR2 to the plasma membrane and protects TGFβR2 from lysosome‐mediated degradation, thereby promoting TGFβ‐mediated HSC activation. FAK is a target for suppressing HSC activation and the hepatic tumor microenvironment.


Url:
DOI: 10.1002/hep4.1452
PubMed: 32025610
PubMed Central: 6996408


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFβ Receptor 2</title>
<author>
<name sortKey="Chen, Yunru" sort="Chen, Yunru" uniqKey="Chen Y" first="Yunru" last="Chen">Yunru Chen</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Qing" sort="Li, Qing" uniqKey="Li Q" first="Qing" last="Li">Qing Li</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tu, Kangsheng" sort="Tu, Kangsheng" uniqKey="Tu K" first="Kangsheng" last="Tu">Kangsheng Tu</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yuanguo" sort="Wang, Yuanguo" uniqKey="Wang Y" first="Yuanguo" last="Wang">Yuanguo Wang</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xianghu" sort="Wang, Xianghu" uniqKey="Wang X" first="Xianghu" last="Wang">Xianghu Wang</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Dandan" sort="Liu, Dandan" uniqKey="Liu D" first="Dandan" last="Liu">Dandan Liu</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Chen" sort="Chen, Chen" uniqKey="Chen C" first="Chen" last="Chen">Chen Chen</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Donglian" sort="Liu, Donglian" uniqKey="Liu D" first="Donglian" last="Liu">Donglian Liu</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Rendong" sort="Yang, Rendong" uniqKey="Yang R" first="Rendong" last="Yang">Rendong Yang</name>
<affiliation>
<nlm:aff id="hep41452-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Wei" sort="Qiu, Wei" uniqKey="Qiu W" first="Wei" last="Qiu">Wei Qiu</name>
<affiliation>
<nlm:aff id="hep41452-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Ningling" sort="Kang, Ningling" uniqKey="Kang N" first="Ningling" last="Kang">Ningling Kang</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32025610</idno>
<idno type="pmc">6996408</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996408</idno>
<idno type="RBID">PMC:6996408</idno>
<idno type="doi">10.1002/hep4.1452</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000587</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000587</idno>
<idno type="wicri:Area/Pmc/Curation">000587</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000587</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000753</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000753</idno>
<idno type="wicri:Area/Ncbi/Merge">000E93</idno>
<idno type="wicri:Area/Ncbi/Curation">000E93</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000E93</idno>
<idno type="wicri:Area/Main/Merge">000812</idno>
<idno type="wicri:Area/Main/Curation">000812</idno>
<idno type="wicri:Area/Main/Exploration">000812</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFβ Receptor 2</title>
<author>
<name sortKey="Chen, Yunru" sort="Chen, Yunru" uniqKey="Chen Y" first="Yunru" last="Chen">Yunru Chen</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Qing" sort="Li, Qing" uniqKey="Li Q" first="Qing" last="Li">Qing Li</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tu, Kangsheng" sort="Tu, Kangsheng" uniqKey="Tu K" first="Kangsheng" last="Tu">Kangsheng Tu</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yuanguo" sort="Wang, Yuanguo" uniqKey="Wang Y" first="Yuanguo" last="Wang">Yuanguo Wang</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xianghu" sort="Wang, Xianghu" uniqKey="Wang X" first="Xianghu" last="Wang">Xianghu Wang</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Dandan" sort="Liu, Dandan" uniqKey="Liu D" first="Dandan" last="Liu">Dandan Liu</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Chen" sort="Chen, Chen" uniqKey="Chen C" first="Chen" last="Chen">Chen Chen</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Donglian" sort="Liu, Donglian" uniqKey="Liu D" first="Donglian" last="Liu">Donglian Liu</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="hep41452-curr-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Rendong" sort="Yang, Rendong" uniqKey="Yang R" first="Rendong" last="Yang">Rendong Yang</name>
<affiliation>
<nlm:aff id="hep41452-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Wei" sort="Qiu, Wei" uniqKey="Qiu W" first="Wei" last="Qiu">Wei Qiu</name>
<affiliation>
<nlm:aff id="hep41452-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Ningling" sort="Kang, Ningling" uniqKey="Kang N" first="Ningling" last="Kang">Ningling Kang</name>
<affiliation>
<nlm:aff id="hep41452-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Hepatology Communications</title>
<idno type="eISSN">2471-254X</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Transforming growth factor β (TGFβ) induces hepatic stellate cell (HSC) differentiation into tumor‐promoting myofibroblast, although underlying mechanism remains incompletely understood. Focal adhesion kinase (FAK) is activated in response to TGFβ stimulation, so it transmits TGFβ stimulus to extracellular signal‐regulated kinase and P38 mitogen‐activated protein kinase signaling. However, it is unknown whether FAK can, in return, modulate TGFβ receptors. In this study, we tested whether FAK phosphorylated TGFβ receptor 2 (TGFβR2) and regulated TGFβR2 intracellular trafficking in HSCs. The FAKY397F mutant and PF‐573,228 were used to inhibit the kinase activity of FAK, the TGFβR2 protein level was quantitated by immunoblotting, and HSC differentiation into myofibroblast was assessed by expression of HSC activation markers, alpha‐smooth muscle actin, fibronectin, or connective tissue growth factor. We found that targeting FAK kinase activity suppressed the TGFβR2 protein level, TGFβ1‐induced mothers against decapentaplegic homolog phosphorylation, and myofibroblastic activation of HSCs. At the molecular and cellular level, active FAK (phosphorylated FAK at tyrosine 397) bound to TGFβR2 and kept TGFβR2 at the peripheral plasma membrane of HSCs, and it induced TGFβR2 phosphorylation at tyrosine 336. In contrast, targeting FAK or mutating Y336 to F on TGFβR2 led to lysosomal sorting and degradation of TGFβR2. Using RNA sequencing, we identified that the transcripts of 764 TGFβ target genes were influenced by FAK inhibition, and that through FAK, TGFβ1 stimulated HSCs to produce a panel of tumor‐promoting factors, including extracellular matrix remodeling proteins, growth factors and cytokines, and immune checkpoint molecule PD‐L1. Functionally, targeting FAK inhibited tumor‐promoting effects of HSCs
<italic>in vitro</italic>
and in a tumor implantation mouse model.
<italic>Conclusion:</italic>
FAK targets TGFβR2 to the plasma membrane and protects TGFβR2 from lysosome‐mediated degradation, thereby promoting TGFβ‐mediated HSC activation. FAK is a target for suppressing HSC activation and the hepatic tumor microenvironment.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Chen, Chen" sort="Chen, Chen" uniqKey="Chen C" first="Chen" last="Chen">Chen Chen</name>
<name sortKey="Chen, Yunru" sort="Chen, Yunru" uniqKey="Chen Y" first="Yunru" last="Chen">Yunru Chen</name>
<name sortKey="Kang, Ningling" sort="Kang, Ningling" uniqKey="Kang N" first="Ningling" last="Kang">Ningling Kang</name>
<name sortKey="Li, Qing" sort="Li, Qing" uniqKey="Li Q" first="Qing" last="Li">Qing Li</name>
<name sortKey="Liu, Dandan" sort="Liu, Dandan" uniqKey="Liu D" first="Dandan" last="Liu">Dandan Liu</name>
<name sortKey="Liu, Donglian" sort="Liu, Donglian" uniqKey="Liu D" first="Donglian" last="Liu">Donglian Liu</name>
<name sortKey="Qiu, Wei" sort="Qiu, Wei" uniqKey="Qiu W" first="Wei" last="Qiu">Wei Qiu</name>
<name sortKey="Tu, Kangsheng" sort="Tu, Kangsheng" uniqKey="Tu K" first="Kangsheng" last="Tu">Kangsheng Tu</name>
<name sortKey="Wang, Xianghu" sort="Wang, Xianghu" uniqKey="Wang X" first="Xianghu" last="Wang">Xianghu Wang</name>
<name sortKey="Wang, Yuanguo" sort="Wang, Yuanguo" uniqKey="Wang Y" first="Yuanguo" last="Wang">Yuanguo Wang</name>
<name sortKey="Yang, Rendong" sort="Yang, Rendong" uniqKey="Yang R" first="Rendong" last="Yang">Rendong Yang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000812 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000812 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     PMC:6996408
   |texte=   Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFβ Receptor 2
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32025610" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021